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Abstract

The local structure of a 3-dimensional essentially weakly para-cosymplectic manifold is described in two ways: using special
adapted local frames and special coordinate systems. This enables a description of the curvature of such manifolds. Local isometries
and Killing vector fields are also investigated. It is proved that if a 3-dimensional weakly para-cosymplectic manifold is locally
homogeneous as a Riemannian manifold, then it is para-cosymplectic or locally flat. Then a classification of such manifolds is
given.
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1. Introduction

Let M be a (2n + 1)-dimensional connected differentiable manifold. Denote by X(M) the Lie algebra of vector
fields on M . From now on, X, Y, Z , . . . denote arbitrary smooth vector fields on M , i.e. elements of X(M).

An almost para-contact hyperbolic metric structure on M is a quadruple (ϕ, ξ, η, g) consisting of a (1, 1)-tensor
field ϕ, a vector field ξ , a 1-form η and a pseudo-Riemannian metric g on M satisfying the following relations [5]:

ϕ2 X = X − η(X)ξ, η(ξ) = 1, g(ϕX, ϕY ) = −g(X, Y ) + η(X)η(Y ).

As consequences of the above, we additionally have ϕξ = 0, η(ϕX) = 0, η(X) = g(X, ξ), (ξ, ξ) = 1,
g(ϕX, Y ) + g(ϕY, X) = 0. Thus, Φ defined by Φ(X, Y ) = g(ϕX, Y ), is a (skew-symmetric) 2-form on M , which is
called the fundamental form (of the structure).

The manifold M endowed with an almost para-contact hyperbolic metric structure (ϕ, ξ, η, g) will be called (cf.
[4])

(a) para-cosymplectic if η and Φ are parallel with respect to the Levi-Civita connection ∇ of the metric g (∇η = 0,
∇Φ = 0);
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(b) almost para-cosymplectic if the forms η and Φ are closed (dη = 0, dΦ = 0);
(c) weakly para-cosymplectic if it is almost para-cosymplectic and its curvature operators R(X, Y ) = [∇X , ∇Y ] −

∇[X,Y ] commute with ϕ, that is,

[R(X, Y ), ϕ] = R(X, Y )ϕ − ϕR(X, Y ) = 0. (1)

We have the following strict inclusions for these classes of manifolds: para-cosymplectic ⊂ weakly para-cosymplectic
⊂ almost para-cosymplectic.

The above notions are para-contact with hyperbolic metric analogues of (almost) cosymplectic manifolds (for
cosymplectic and almost cosymplectic manifolds, see [1,7,8], etc.).

Our definition of the para-cosymplecticity differs from that used in the paper [5], in which this notion concerns
even-dimensional indefinite almost Hermitian or almost para-Hermitian manifolds with coclosed fundamental forms.

Let M be an almost para-cosymplectic manifold. ThenD = ker η is a 2n-dimensional involutive distribution on M .
Let F be the foliation of M generated by D. Then D and F are called, respectively, the canonical distribution and the
canonical foliation of M . Moreover, D is ϕ-invariant since D = Im ϕ. Therefore, on any leaf M̄ of F , the restrictions
J = ϕ|M̄ and G = g|M̄ define an almost para-Hermitian structure on M̄ (see [2,3] for such structures). This means
that J 2 X̄ = X̄ and G(J X̄ , J Ȳ ) = −G(X̄ , Ȳ ) for any vector fields X̄ , Ȳ ∈ X(M̄). The fundamental form Ω of the
structure (J, G), Ω(X̄ , Ȳ ) = G(J X̄ , Ȳ ), is the pull-back of Φ, so it is closed. Thus, M̄ equipped with (J, G) becomes
an almost para-Kählerian manifold.

Let A be the (1, 1)-tensor field on M defined by

AX = −∇Xξ. (2)

One notes that A restricted to a leaf M̄ of F is just the shape operator of M̄ . Algebraic properties of A can be listed
as follows (cf. [4]):

g(AX, Y ) = g(AY, X), Aξ = 0, η ◦ A = 0, Aϕ + ϕ A = 0,

g(ϕ AX, Y ) = g(ϕ AY, X), Trace (ϕ A) = Trace (A) = 0.
(3)

If for any leaf M̄ of the canonical foliation F , the structure (J, G) induced on M̄ is para-Kählerian (∇̄ J = 0), we say
that the almost para-cosymplectic manifold M has para-Kählerian leaves. An almost para-cosymplectic manifold has
para-Kählerian leaves if and only if (see [4])

Nϕ(X, Y ) = 2η(X)AY − 2η(Y )AX, (4)

or, equivalently,

(∇Xϕ)Y = g(AϕX, Y )ξ − η(Y )AϕX, (5)

where Nϕ is the Nijenhuis torsion tensor corresponding to ϕ,

Nϕ(X, Y ) = ϕ2
[X, Y ] + [ϕX, ϕY ] − ϕ[ϕX, Y ] − ϕ[X, ϕY ].

The rest of this paper is devoted to studying weakly para-cosymplectic manifolds in dimension 3.

2. Local structure frames

Since any 3-dimensional almost para-cosymplectic manifold has para-Kählerian leaves, Theorem 5 from [4]
enables us to claim that a 3-dimensional almost para-cosymplectic manifold is weakly para-cosymplectic if and only
if the following two conditions are fulfilled:

(I) A is a Codazzi tensor field, that is,

(∇X A)Y − (∇Y A)X = 0; (6)

(II) at any point p ∈ M , either (a) Ap = 0 or (b) there exists a non-zero null vector v ∈ Tp M such that
Apu = ε1g(u, v)v for any u ∈ Tp M and ϕv = ε2v, where ε1 = ±1, ε2 = ±1.
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A para-cosymplectic manifold is locally a product of an open interval and a para-Kählerian manifold (cf. [4]). In
this context, we will concentrate our study on the case when ∇ϕ 6= 0.

If ∇ϕ 6= 0 at every point of a weakly para-cosymplectic manifold M , then we say that M is essentially weakly
para-cosymplectic.

A 3-dimensional almost para-cosymplectic manifold is essentially weakly para-cosymplectic if and only if the
conditions (I) and (II)(b) hold. Indeed, by virtue of (5), one claims that at a point of a 3-dimensional almost para-
cosymplectic manifold the following equivalence holds: ∇ϕ = 0 if and only if A = 0.

Let M be a 3-dimensional essentially weakly para-cosymplectic manifold.

Lemma 1. For any p ∈ M, there exist a neighborhood O of p and a vector field V ∈ X(O), which is unique up to a
sign, non-zero, null, orthogonal to ξ and such that

AX = ε1g(X, V )V (7)

for any X ∈ X(O), where ε1 = ±1. Moreover, ϕV = ε2V with ε2 = ±1.

Proof. Fix an arbitrary point p ∈ M . Next choose an open connected neighborhood O of p, a vector field Z ∈ X(O)

such that g(AZ , Z) 6= 0 at every point of O. Normalizing Z , we assume that g(AZ , Z) = ε1, where |ε1| = 1.
We will show that V = AZ is just the desired vector field. For, if X ∈ X(O), then there exists a smooth
function f ∈ F(O) for which AX = f V . Hence g(AX, Z) = f g(V, Z) = f g(AZ , Z) = ε1 f . Consequently,
f = ε1g(AX, Z) = ε1g(X, AZ) = ε1g(X, V ). This gives (7). Using the anticommutativity Aϕ + ϕ A = 0 (cf. (3))
and (7), we have g(ϕX, V )V + g(X, V )ϕV = 0, which shows that ϕV and V are collinear. Hence ϕV = ε2V for a
certain ε2 = ±1. The rest of the assertion is an obvious consequence of (II)(b). �

Lemma 2. For any p ∈ M, there exist a neighborhood O of p and a frame of vector fields (V, U, ξ) on O such that

g(V, U ) = g(ξ, ξ) = 1, g(V, V ) = g(U, U ) = g(V, ξ) = g(U, ξ) = 0. (8)

With respect to (V, U, ξ), the linear operators ϕ and A are given by

(a) AV = 0, AU = ε1V, Aξ = 0,

(b) ϕV = ε2V, ϕU = −ε2U, ϕξ = 0.
(9)

Consequently, the second fundamental form Φ is given on O by

Φ(V, U ) = ε2, Φ(V, ξ) = Φ(U, ξ) = 0. (10)

Proof. We use the neighborhoodO and the vector field V from Lemma 1 and additionally choose uniquely the vector
field U ∈ X(O) such that ϕU = −ε2U and g(U, V ) = 1. Since U is an eigenvector field of ϕ, g(U, U ) = 0. The rest
of the relations can be checked using (7). �

Lemma 3. With respect to the structure frame (V, U, ξ), the Levi-Civita connection ∇ of M is given by

(a) ∇V V = ∇ξ V = 0, ∇U V = βV,

(b) ∇V U = ∇ξU = 0, ∇U U = ε1ξ − βU,

(c) ∇V ξ = ∇ξ ξ = 0, ∇U ξ = −ε1V,

(11)

β being a certain function on O. Consequently, for the Lie brackets of V, U, ξ , we have

[V, U ] = −βV, [V, ξ ] = 0, [U, ξ ] = −ε1V, (12)

and dβ(ξ) = 0.

Proof. Consider any X, Y ∈ X(O). First, we prove that the covariant derivatives of V are given by

∇X V = βg(X, V )V (13)

for a certain function β on O. For, using formulas (7) and (8), we find that g(∇X V, V ) = 0 and

g(∇X V, ξ) = −g(V, ∇Xξ) = g(V, AX) = ε1g(X, V )g(V, V ) = 0.



564 P. Dacko, Z. Olszak / Journal of Geometry and Physics 57 (2007) 561–570

Therefore, ∇X V is collinear with V , so we can write

∇X V = τ(X)V, (14)

where τ is a 1-form on O. Now, using (7) and (14), we get

(∇X A)Y = ∇X AY − A∇X Y

= ε1g(Y, ∇X V )V + ε1g(Y, V )∇X V = 2ε1τ(X)g(Y, V )V . (15)

Recalling the Codazzi condition (6) and using (15), we obtain τ(X)g(Y, V ) = τ(Y )g(X, V ), which implies

τ(X) = βg(X, V ) (16)

for a certain function β on O. Finally, (16) applied to (14) gives (13).
The formulas (11)(a) follow now from (13) if we use (8). By (2), ∇Xξ = −AX ; therefore the formulas (11)(c) are

in fact consequences of (9)(a). Moreover, using (8), the already obtained formulas (11)(a), (c) and the metricity of ∇,
we find (11)(b). Now, (12) follows from (11). Finally, dβ(ξ) = 0 is a consequence of (12) and the Jacobi identity

[[V, U ], ξ ] + [[U, ξ ], V ] + [[ξ, V ], U ] = 0,

which completes the proof. �

In what follows, the frame (V, U, ξ) and the function β that appeared in the above lemmas will be called the
structure frame and the structure function on the set O.

Proposition 4. The Riemann curvature operators R(X, Y ), the Ricci curvature tensor S and the scalar curvature r of
a 3-dimensional essentially weakly para-cosymplectic manifold M are given by

R(X, Y ) = (r/2)Φ(X, Y ) ϕ, (17)

S(X, Y ) = (r/2)(g(X, Y ) − η(X)η(Y )), (18)

r = 2dβ(V ), (19)

Φ being the second fundamental form of M.

Proof. First note that

R(X, Y )ξ = 0 (20)

is a consequence of [R(X, Y ), ϕ]ξ = 0. Moreover, using (14) we can calculate the following:

R(X, Y )V = ∇
2
X,Y V − ∇

2
Y,X V = ((∇Xτ)(Y ) − (∇Y τ)(X)) V

= 2dτ(X, Y )V . (21)

Additionally, the algebraic properties of the Riemann curvature tensor R and (20), (21) imply

R(X, Y )U = −2dτ(X, Y )U. (22)

Comparing (20)–(22) with (9)(b), we conclude that

R(X, Y ) = 2ε2dτ(X, Y )ϕ. (23)

Eq. (23) together with (9)(b) applied to the first Bianchi identity gives

0 = R(ξ, V )U + R(V, U )ξ + R(U, ξ)V = −2dτ(ξ, V )U + 2dτ(U, ξ)V .

This leads to dτ(ξ, V ) = dτ(ξ, U ) = 0, which compared to (10) shows that the 2-forms dτ and Φ are collinear; to be
precise,

dτ(X, Y ) = ε2dτ(V, U )Φ(X, Y ). (24)

On the other hand, using (16) and (14), we find

dτ(X, Y ) =
1
2

(dβ(X)g(Y, V ) − dβ(Y )g(X, V )) .
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Hence using also (8), we get dτ(V, U ) = (1/2)dβ(V ). This together with (24) applied to (23) yields

R(X, Y ) = dβ(V )Φ(X, Y ) ϕ. (25)

Therefore for the Ricci tensor, we obtain

S(Y, Z) = dβ(V )(g(Y, Z) − η(Y )η(Z)), (26)

and hence for the scalar curvature, we get (19). Finally, (17) and (18) follow from (25) and (26) in view of (19). �

3. Local structure

Now, we are going to prove theorems characterizing locally essentially weakly para-cosymplectic manifolds among
3-dimensional almost para-contact manifolds with a hyperbolic metric.

Proposition 5. For a 3-dimensional almost para-contact manifold with a hyperbolic metric, the following conditions
are equivalent:

(i) M is essentially weakly para-cosymplectic.
(ii) For any point p ∈ M, there exist a neighborhood O of p and vector fields V, U ∈ X(O) such that

[V, U ] = −βV, [V, ξ ] = 0, [U, ξ ] = −ε1V,

g(V, U ) = g(ξ, ξ) = 1, g(V, V ) = g(U, U ) = g(V, ξ) = g(U, ξ) = 0,

ϕV = ε2V, ϕU = −ε2U, ϕξ = 0, η(·) = g(·, ξ),

(27)

where |ε1| = |ε2| = 1 and β is a function on O.

Proof. The implication (i) ⇒ (ii) follows from Lemmas 2 and 3.
(ii) ⇒ (i). Let a 3-dimensional almost para-contact hyperbolic metric manifold M satisfy (27). First, we note that

under this assumption, for the fundamental form Φ of M , we must have Φ(V, U ) = ε2 and Φ(V, ξ) = Φ(U, ξ) = 0.
Therefore, for the exterior derivative of Φ, it is possible to obtain

3dΦ(V, U, ξ) = V Φ(U, ξ) + UΦ(ξ, V ) + ξΦ(V, U ) − Φ([V, U ], ξ) − Φ([U, ξ ], V ) − Φ([ξ, V ], U ) = 0.

Additionally, since the exterior derivative of the form η can be expressed as

2dη(X, Y ) = Xη(Y ) − Yη(X) − η([X, Y ]),

a computation shows that dη(V, U ) = dη(V, ξ) = dη(U, ξ) = 0. Thus, the forms Φ and η are closed and the
manifold M is almost para-cosymplectic.

Furthermore, by the assumption (27), the Levi-Civita connection of M is given just by the formulas (11). And it is
also clear that the curvature of M is given by the formula (17) because it is in fact a consequence of the expression
of the Levi-Civita connection (11) only. Now, after using (17), the formula (1) follows easily, so M is weakly para-
cosymplectic.

It remains to prove that ∇ϕ 6= 0 at every point of M . But applying (11), we compute (∇UΦ)(U, ξ) = −ε1ε2 6= 0,
which completes the proof. �

Proposition 6. For a 3-dimensional almost para-contact hyperbolic metric manifold, the following conditions are
equivalent:

(i) M is essentially weakly para-cosymplectic.
(ii) For any p ∈ M, there exists a local chart (O, (x, y, z)) centred at p and such that

ξ = ∂z, η = dz,

ϕ∂x = ε2∂x , ϕ∂y = 2ε2(b(x, y) − ε1z)∂x − ε2∂y, ϕ∂z = 0,

g(∂x , ∂y) = g(∂z, ∂z) = 1, g(∂y, ∂y) = 2(b(x, y) − ε1z),

g(∂x , ∂x ) = g(∂x , ∂z) = g(∂y, ∂z) = 0,

(28)

where ∂x = ∂/∂x, ∂y = ∂/∂y, ∂z = ∂/∂z, b is a function depending on two variables only and ε1, ε2 are real
constants such that |ε1| = |ε2| = 1.
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Proof. (i) ⇒ (ii). We are going to apply Proposition 5. First we find expressions for the frame vectors V, U, ξ in a
certain special coordinate system.

By [V, ξ ] = 0, the vector fields V and ξ are straightened simultaneously on a coordinate neighborhood
(O′, (x ′, y′, z′)) of p. So we have

V = ∂x ′ , U = ux ′∂x ′ + u y′∂y′ + uz′∂z′ , ξ = ∂z′

for certain functions ux ′ , u y′ , uz′ with u y′ 6= 0 onO′. For simplicity, we can assume thatO′ is a cubical neighborhood
of p, say O′

= P3, where P = (−a, a) and a is a positive real number. Furthermore, as regards the commutators
(12), we have

∂x ′ux ′ = −β, ∂z′ux ′ = ε1, ∂x ′u y′ = ∂z′u y′ = ∂x ′uz′ = ∂z′uz′ = 0.

From the above system of equations, it follows that

ux ′ = h(x ′, y′) + ε1z′, u y′ = u y′(y′), uz′ = uz′(y′)

for a certain function h of two variables.
Let v: P → R and w: P → R be functions defined by

v(t) =

∫ t

0

ds

u y′(s)
, w(t) =

∫ t

0

uz′(s)

u y′(s)
ds, t ∈ P.

The function v has the inverse v−1: v(P) → P . We introduce new coordinates (x, y, z), x, z ∈ P , y ∈ v(P) on a
neighborhood O of p by assuming

x ′
= x, y′

= v−1(y), z′
= z + w̃(y),

where w̃: v(P) → R stands for the composition w ◦ v−1. One verifies that

V = ∂x ′ = ∂x , ξ = ∂z′ = ∂z,

U = u y′(y′)∂y′ +
(
ε1z′

+ h(x ′, y′)
)
∂x ′ + uz′(y′)∂y′

= (ε1z + ε1w̃(y)) + h(x, v−1(y))∂x + ∂y .

Denoting the term ε1w̃(y) + h(x, v−1(y)) simply by −b(x, y), we have

V = ∂x , U = (ε1z − b(x, y))∂x + ∂y, ξ = ∂z . (29)

Therefore, we can write on O,

∂x = V, ∂y = (b(x, y) − ε1z)V + U, ∂z = ξ.

Now, to obtain (28), it is sufficient to use (8) and (9)(b).
(ii) ⇒ (i). Conversely, if we assume (28) and define a local frame (V, U, ξ) like in the formula (29), then it is

straightforward to verify that (27) holds. This in view of Proposition 5 completes the proof. �

In the sequel, the local charts (O, (x, y, z)) constructed in Proposition 6 will be called canonical charts of an
essentially weakly para-cosymplectic manifold.

Lemma 7. With respect to a canonical chart (O, (x, y, z)) of a 3-dimensional essentially weakly para-cosymplectic
manifold M, we have

β = ∂x b, r = 2∂2
x b. (30)

Proof. Recalling (29), we see that [V, U ] = −(∂x b)V . This compared to [V, U ] = −βV (cf. (12)) leads to the first
equality of (30). The second equality of (30) follows from the first one and (19). �
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4. Local isometries and Killing vector fields

Proposition 8. Let M be a 3-dimensional essentially weakly para-cosymplectic manifold, whose curvature does not
vanish at any point. If p ∈ M and f :O → f (O) ⊂ M is a local isometry, then f is a local isomorphism of the
structure (ϕ, ξ, η, g), that is,

f ∗g = g, f∗ξ = ξ, f ∗Φ = Φ, f∗ ◦ ϕ = ϕ ◦ f∗, f∗η = η.

Moreover, for a certain ε = ±1,

f∗V = εV, f∗U = εU, β ◦ f = εβ.

Proof. By (17), for the Riemann curvature tensor of M , we have the formula

R(X, Y, Z , W ) = g(R(X, Y )Z , W ) =
r

2
Φ(X, Y )Φ(Z , W ).

On the other hand, when f is a local isometry, then

R( f∗ X, f∗Y, f∗Z , f∗W ) = R(X, Y, Z , W ), r ◦ f = r.

Hence, for the fundamental form Φ, we must have f ∗Φ = αΦ, α = ±1, and moreover f∗ ◦ ϕ = αϕ ◦ f∗.
Since ϕξ = 0, it must be that ϕ f∗ξ = α f∗ϕξ = 0, so f∗ξ = α1ξ , α1 being a function. But since ξ and

f∗ξ are unit vector fields, α1 = ±1. Moreover, using also (9)(b), we find ϕ f∗V = α f∗ϕV = αε2 f∗V and
ϕ f∗U = α f∗ϕU = −αε2 f∗U . This means that f∗V and f∗U are eigenvector fields for ϕ and they correspond to
different eigenvalues. Therefore, one of them is collinear with V and the other one with U .

Having AX = −∇Xξ , we can find in general the following:

f∗ AX = − f∗∇Xξ = −∇ f∗ X f∗ξ = −α1∇ f∗ Xξ = α1 A f∗ X. (31)

Using (31) and (9)(a), we get α1 A f∗V = f∗ AV = 0. Thus f∗V must be collinear with V , and f∗U must be
collinear with U ; say f∗V = α2V and f∗U = α3U . Thus g( f∗V, f∗U ) = g(V, U ) = 1 implies now α2α3 = 1.
Additionally, using Φ( f∗V, f∗U ) = αΦ(V, U ), we have α2α3 = α. Hence, α = 1.

From (31) it also follows that f∗ AU = α1 A f∗U . Hence, using also (9)(a), we obtain α2 = α1α3. This, compared
to α2α3 = 1, gives α1 = 1 and α2 = α3 = ±1. Finally, by (11)(a) and f∗∇U V = ∇ f ∗U f∗V , we have α2β = β ◦ f .
This completes the proof. �

The “infinitesimal” version of Proposition 8 can be formulated as follows:

Proposition 9. Let M be a 3-dimensional essentially weakly para-cosymplectic manifold, whose curvature does not
vanish at any point. A vector field K on M is Killing if and only if it commutes with the vector fields V, U, ξ , that is,
[K , ξ ] = [K , V ] = [K , U ] = 0. Consequently, for a Killing vector field on M, it holds that Kβ = 0.

Proof. Let p ∈ M and ft , −α < t < α, α > 0, be the local flow of isometries generated by K around p. Then by
Proposition 8,

( ft )∗ξ = ξ, ( ft )∗V = ε(t)V, ( ft )∗U = ε(t)U,

where ε(t) = ±1. In fact ε(t) = 1 since it is a smooth function of t and ε(0) = 1. Therefore, using the famous
formula for the Lie brackets of vector fields, we obtain

[K , V ]p = lim
t→0

( f−t )∗V ft (p) − Vp

t
= 0.

Hence [K , V ] = 0 on M . Similarly, [K , U ] = [K , ξ ] = 0 on M . The equality β = β ◦ ft shows that β is constant
along the trajectories of K ; therefore Kβ = 0. �

Proposition 10. Let M be a 3-dimensional essentially weakly para-cosymplectic manifold whose curvature does not
vanish at any point. Let K be a non-zero vector field on M. K is Killing if and only if for any point p ∈ M and any
canonical chart (O, (x, y, z)) centred at p, there exists an open set O′ such that p ∈ O′

⊂ O and
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b(x, y) = v(x − u(y)) − u′(y) + cy, (32)

K = a(u′(y)∂x + ∂y + ε1c∂z) (33)

on O′, where u and v are certain functions of one variable and a, c = const., c 6= 0.

Proof. Let K be a non-zero Killing vector field on M . By Proposition 9, we know that

[K , V ] = [K , U ] = [K , ξ ] = 0. (34)

First, we note that K 6= 0 at every point of M . In fact, if Kq = 0 at a certain point q ∈ M , then using (34) we have
∇Vq K = [V, K ]q + ∇Kq V = 0, and similarly ∇Uq K = ∇ξq K = 0. Therefore, (∇K )q = 0. Since M is connected,
K = 0 on M , which is a contradiction.

Let p ∈ M and (O, (x, y, z)) be a canonical chart centred at p. We write on O: K = Kx∂x + K y∂y + Kz∂z . Using
(29), we check that conditions (34) imply the following for the components Kx , K y, Kz :

(a) Kx = Kx (y), K y = const., Kz = const.,

(b) ∂y Kx + Kx∂x b + K y∂yb − ε1 Kz = 0.
(35)

Note that additionally K y 6= 0. For, let K y = 0. Then from (35) it follows that Kx∂
2
x b = 0. This together with (30)

leads to r Kx = 0. Since r 6= 0, Kx = 0 on O. But then also Kz = 0 on O, which is impossible as K 6= 0 everywhere
on M .

We suppose

a = K y, w(y) = Kx (y)/a, c = ε1 Kz/a, b̃(x, y) = b(x, y) − cy.

In view of the above and (35)(b), we have the following:

∂y(w(y) + b̃(x, y)) + ∂x (w(y)b̃(x, y)) = 0.

Therefore, in a neighborhood of p there exists a function h(x, y) such that

∂x h(x, y) = w(y) + b̃(x, y), ∂yh(x, y) = −w(y)b̃(x, y). (36)

Next, in a neighborhood of p, we change the coordinates (x, y) into (x̃, ỹ) by assuming x̃ = x − u(y), ỹ = y, where
u(y) is a function such that u′(y) = w(y). Then (36) becomes

∂x̃ h(x̃, ỹ) = w(ỹ) + b̃(x̃ + u(ỹ), ỹ),

∂ỹh(x̃, ỹ) − w(ỹ)∂x̃ h(x̃, ỹ) = −w(ỹ)b̃(x̃ + u(ỹ), ỹ).
(37)

Hence, we deduce that ∂ỹh(x̃, ỹ) = (w(ỹ))2 and consequently the function h can expressed as a sum h(x̃, ỹ) =

h1(x̃) + h2(ỹ) in a neighborhood of p; and therefore ∂x̃ h(x̃, ỹ) = ∂x̃ h1(x̃). If we suppose v(x̃) = ∂x̃ h1(x̃), then from
(37), we deduce b̃(x̃ +u(ỹ), ỹ) = v(x̃)−u′(ỹ). Finally, considering the above and returning to the coordinates (x, y),
we obtain (32) and (33).

Conversely, when using (29), (32) and (33), it is straightforward to verify that (34) holds, which by virtue of
Proposition 9 completes the proof. �

Corollary 11. Let M be a 3-dimensional essentially weakly para-cosymplectic manifold whose curvature does not
vanish at any point. Assume that M admits a non-zero Killing vector field K .

(i) If L is a Killing vector field on M, then L = cK , c = const.
(ii) The scalar curvature of M is constant along any trajectory of K .

Proof. (i) Let L and K be two non-zero Killing vector fields on M . Then in a canonical chart, K y = const. 6= 0,
L y = const. 6= 0 and N = (1/K y)K − (1/L y)L is also a Killing vector field on M . But Ny = 0 implies immediately
N = 0, so L = (L y/K y)K .

(ii) By (30) and (32), in a canonical chart, we have r = 2v′′(x − u(y)). With the help of (33), we get now Kr = 0.
�
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5. Local homogeneity

Theorem 12. Let M be a 3-dimensional essentially weakly para-cosymplectic manifold, whose curvature is non-zero
at any point. Then M is irreducible as a Riemannian manifold.

Proof. Let us assume that the assertion does not hold. Let M satisfy the assumptions and be locally reducible around
some point p ∈ M . Then, because of the dimension, there exists a non-zero, non-isotropic, parallel vector field K
on a sufficiently small neighborhood O of p. By ∇K = 0, we have R(X, Y )K = 0, which by virtue of (17) implies
rΦ(X, Y )ϕK = 0. Since r 6= 0 (cf. (17)), then ϕK = 0 and hence K = aξ for a certain function a. Differentiating
the last equation covariantly and projecting the result obtained onto ξ , we get 0 = da. Consequently, a is a non-zero
constant. Therefore, A = −∇ξ = −(1/a)∇K = 0, which with the help of (5) leads to ∇ϕ = 0. But this is a
contradiction. �

Theorem 13. Let M be 3-dimensional weakly para-cosymplectic manifold. If M is locally homogeneous as a
Riemannian manifold, then it is para-cosymplectic or locally flat.

Proof. Let us suppose that M is not locally flat. By the homogeneity, R 6= 0 at every point of M . Consider the set
Z of points at which ∇ϕ 6= 0. We will show that Z is empty. Assume on the contrary that Z is not empty and fix
a point p ∈ Z . We consider a neighborhood O of p, on which there is defined the structure frame (V, U, ξ) like in
Lemma 2. Let q be an arbitrary point of O. By virtue of Proposition 8, for an isometry f such that f (p) = q, we
have εβ(p) = (β ◦ f )(p) = β(q). Consequently, β = const. on O. Now, by (18) and (17), R = 0 on O, which is a
contradiction. �

Before we classify all 3-dimensional locally homogeneous weakly para-cosymplectic manifolds, we describe three
typical examples of such manifolds.

Example 14. Let (N , J, G) be a homogeneous 2-dimensional para-Kählerian manifold (for such manifolds, see [6]).
Then the structure (ϕ, ξ, η, g) defined on the product manifold M = N × R by

ϕ = (J, 0), ξ = ∂t , η = dt, g = G × dt2,

t being the Cartesian coordinate on R, is homogeneous and para-cosymplectic.

Example 15. Let ε1 = ±1 and ε2 = ±1. Let H3 denote the matrix group consisting of matrices of the form1 ε1z x
0 1 y
0 0 1

 ,

where (x, y, z) ∈ R3. Then, H3 is isomorphic to the Heisenberg group and its underlying manifold is R3. The vector
fields

V = ∂x , U = ε1z∂x + ∂y, ξ = ∂z

are left-invariant and form a basis of the Lie algebra of H3. Define a left-invariant almost para-contact hyperbolic
metric structure on H3 by

ϕV = ε2V, ϕU = −ε2U, ϕξ = 0, η(·) = g(·, ξ), g(ξ, ξ) = g(V, U ) = 1.

By Proposition 5, H3 endowed with this structure becomes an essentially weakly para-cosymplectic manifold. For
this manifold, we have β = 0, so it is flat.

Example 16. Let β = const. 6= 0 and ε1 = ±1, ε2 = ±1. Let A3(β) be the matrix group consisting of matrices of
the forme−y 0 0

x 1 0
0 0 ez

 ,
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where (x, y, z) ∈ R3. Then A3(β) is a solvable, non-unimodular Lie group (which is isomorphic to the product of a
2-dimensional non-abelian Lie group and R) and its underlying manifold is R3. The vector fields

V = ∂x , U = −βx∂x + β∂y, ξ = −ε1β
−1∂x + ∂z

are left-invariant and form a basis of the Lie algebra of A3(β). Define a left-invariant almost para-contact hyperbolic
metric structure on A3(β) by

ϕV = ε2V, ϕU = −ε2U, η(·) = g(·, ξ), g(ξ, ξ) = g(V, U ) = 1.

By Proposition 5, A3(β) endowed with this structure becomes an essentially weakly para-cosymplectic manifold. For
this manifold, we have β = const. 6= 0, so it is also flat. But obviously this structure differs from those defined in the
previous examples.

Theorem 17. Let M be a 3-dimensional weakly para-cosymplectic manifold, which is locally homogeneous as a
Riemannian manifold. Then M is locally isomorphic to

(i) a product of a 2-dimensional homogeneous para-Kähler manifold and an open interval in the case when ∇ϕ = 0;
or

(ii) H3 endowed with the essentially weakly para-cosymplectic structure as in Example 15 when ∇ϕ 6= 0 and β = 0;
or

(iii) A3(β) endowed with the essentially weakly para-cosymplectic structure as in Example 16 when ∇ϕ 6= 0 and
β = const. 6= 0.

Proof. If M is para-cosymplectic, then it is locally a product of a 2-dimensional para-Kähler manifold and an open
interval; and next by the homogeneity the product is like in Example 14. Let M be non-para-cosymplectic. By
Theorem 13, it is locally flat, and by Proposition 8, the function β is constant. We have two possibilities: β = 0 and
β 6= 0. Now using Proposition 5, we see that locally the structure (ϕ, ξ, η, g) can be described like in Examples 15
and 16. �

References

[1] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, in: Progress Math., vol. 203, Birkhäuser, Boston, Basel, Berlin, 2002.
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